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Abstract

The article is aimed at searching for loci of points of given properties using dynamic geometry
systems (DGS) and computer algebra systems (CAS) in teaching geometry. Loci of points belong
to difficult topics of school curricula at all levels of mathematics education. New technologies
can facilitate these topics. By DGS we demonstrate a problem. DGS also enables us to find the
searched locus and state a conjecture. To identify the locus equation we use CAS which perform
symbolic computations. In addition, in those cases, where it is possible, a classical proof is given
as well. This method is demonstrated in several examples from 2D and 3D geometry.

1 Introduction
Loci of points belong to difficult topics of school curricula at all levels of mathematics education, al-
though they have significant importance of motivation and discovery. The development of computers
and mathematical software allows such activities that previously were not possible. There are many
interesting loci — besides well known conics also algebraic curves of higher degree such as cubics,
quartics etc. — which students can recognize. It turns out that such curves and their properties could
become a common part of a school curricula in the near future. Moreover new technologies and math-
ematical software facilitate investigating loci in a 3D space as well. From this point of view students
could encounter cubic surfaces and surfaces of higher degree as important loci in their textbooks soon.

The paper presents our experience with exploring of loci of points of given properties with com-
puter support at the university course on geometry. This experience could also serve as a method for
searching for loci in teaching geometry.

We will show the technique we are using at a university geometry seminar on using computer
methods to solve problems in elementary geometry. One of the authors leads this geometry seminar
for several years. The students who take part in this seminar are mostly participants of teacher’s train-
ing of mathematics in their 4th year study, i.e. they have knowledge at the level of a basic course in
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geometry. The seminar is aimed at various proving techniques including automated geometry theo-
rem proving. In the seminar classical proving with paper and pencil is often compared with computer
proving [12]. After the introduction of basic knowledge from the theory of automated geometry the-
orem proving students work on their seminar works with topics often taken from [1]. Seminar works
consist of the following parts: Introduction of a problem, Demonstration in DGS, Visual evidence
in DGS (visual proof), Classical proof, Automated (computer) proof (in CAS). Note that under au-
tomated (computer) proof we mean interactive proof, i.e. performing several steps (Introduction of
a coordinate system, Translation of geometric properties into the set of algebraic equations and in-
equations, Computation of the normal form of a conclusion polynomial with respect to the Gröbner
basis of the hypotheses ideal, ....) which are necessary to prove a statement, see [12] for details. From
this point of view the way applied in [11] seems to be promising in interactive proving in teaching
geometry.

Students mostly prefer classical proving to computer proving as it enables real insight into the
problem. But in the case they do not have a ”key idea” to prove the problem classically, they think
about computer proving. As computer proving (we mean its interactive form) is quite new for stu-
dents, let us give some remarks on our experience with computer proving in a geometric seminar, see
also [13]:

• Students learn that there exists ”modern” powerful method to solve problems.

• Classical and computer approaches are complementary.

• Students have many problems with computer solving — more than expected.

• Students rely more on the computer instead of themselves.

• Problems with translation from algebra to geometry, e.g. to explain degeneracy conditions
geometrically, students prefer an algebraic formulation to a geometric one, etc.

• Automatic geometry theorem proving requires deep geometric knowledge.

• There are problems which we are not able to solve classically, e.g. most non-Euclidean con-
structions can be carried out by computer.

• There are problems which we are not able to solve even by computer — e.g. in connection with
completeness of the method.

• The main principle - switching between geometry and algebra.

• Motivation for geometry, algebra and learning English.

The paper is structured as follows: Section 2 gives basic knowledge of exploring loci of points, in
Section 3 loci in a plane are investigated in two examples and finally in Section 4 we demonstrate a
locus in 3D.
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2 Exploring loci of points
Derivation of geometry theorems belongs to mighty tools of automated geometry theorem proving. By
elimination of suitable variables in the system of algebraic equations, describing geometric properties
of given objects, we get the required formulas. From this point of view searching for loci equations
can be considered as derivation (discovering) of algebraic formulas which the locus point (tracer)
must satisfy while the mover point moves along its path [14], [3].

By exploring loci we first use DGS to demonstrate a problem. DGS programs GeoGebra 1 [6] and
Cabri Geometry II [8] are often used at the geometry course. Students can construct geometric figures
and dynamically change them by moving points. We can create a hypothesis by using the DGS for
creating a trace for the point.

There exist many DGS programs with some minor differences which behave in a similar way
when obtaining loci. In general, two objects must be selected: the first one, usually a point called
driving point or mover, is bound to a path, whereas the other, the locus point or tracer, depends
somehow on the first one. Since the element dependence is preserved while a driving point traverses
its path, the locus is the trajectory of the locus point [2].

Next important part comes after verification by visual evidence in DGS (visual proof) — searching
for locus equation or its characteristic property. Usually we need to choose suitable coordinate system
and decide, where to place points and objects to obtain the simplest expressions.

Then we translate geometric properties of the problem into algebraic equations and inequations.
By CAS we get the locus equation from the system of these equations and inequations using elimi-
nation of variables. Elimination is implemented in most CAS. In the paper we will use the program
CoCoA2, [4] which is based on Gröbner bases computation [5], and the program Epsilon3, [18], [17]
which is based on Wu–Ritt characteristic sets approach [19]. In most cases by elimination of coordi-
nates of the mover we obtain the locus equation of our searched curve/surface.

3 Loci in plane
This section is concerned with searching for loci of points in plane. We will give two examples of
plane loci.

3.1 Asteroid
This example shows one property of an asteroid [15] (Fig. 3). Let us solve the following problem:

Let k be a circle with two orthogonal diameters x, y. Denote by A and B the feet of perpendiculars
to x and y from an arbitrary point C ∈ k. Find the locus of M which is on AB such that CM is
perpendicular to AB when C moves along k.

We can define:

1Software GeoGebra is freely distributed at the address http://www.geogebra.at
2Software CoCoA is freely distributed at http://cocoa.dima.unige.it
3Software Epsilon is freely distributed at http://www-calfor.lip6.fr/Xwang/epsilon/
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Definition 1 The locus above we call ”A-perpendicular”.

First we demonstrate the locus in GeoGebra. Using the button Trace on (Fig. 1) or the button Locus

Figure 1: Locus by ”Trace on” button Figure 2: Locus by ”Locus” button

(Fig. 2) we construct the locus of M as C moves along k.
The visual appearance produced by GeoGebra indicates an asteroid. In order to verify this assumption
we search for the equation of this curve.

For that purpose we place a coordinate system so that A = [p, 0], B = [0, q], C = [p, q], M =
[m,n] and let k be a circle centered at O = [0, 0] with radius a, a 6= 0 (Fig. 3)1.

Translation of geometry properties of objects into the set of polynomial equations gives

Figure 3: Exploring the locus of M with moving C

M ∈ AB ⇔ H1 := qm+ pn− pq = 0,

CM ⊥ AB ⇔ H2 := pm− qn− p2 + q2 = 0,

C ∈ k ⇔ H3 := p2 + q2 − a2 = 0.

We get the system of three equations H1 = 0, H2 = 0, H3 = 0 in variables p, q,m, n, a.
To find the locus of M = [m,n] we eliminate variables p, q in the ideal I = (H1, H2, H3) and get a
relation in m,n which depends on a.

1Instead of a we can choose the value 1 to simplify the problem. But we will keep the value a to obtain the locus
equation depending on this parameter as we can see in [9], [15]
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In CoCoA we enter

Use R::=Q[p,q,m,n,a];
I:=Ideal(qm+pn-pq,pm-qn-pˆ2+qˆ2,pˆ2+qˆ2-aˆ2);
Elim(p..q,I);

and get the elimination ideal

Ideal(-2/9mˆ6aˆ2-2/3mˆ4nˆ2aˆ2-2/3mˆ2nˆ4aˆ2-2/9nˆ6aˆ2+2/3mˆ4aˆ4-
-14/3mˆ2nˆ2aˆ4+2/3nˆ4aˆ4-2/3mˆ2aˆ6-2/3nˆ2aˆ6+2/9aˆ8)

which is generated by the only polynomial which, after factoring, with respect to a 6= 0, leads to the
equation

m6 + 3m4n2 + 3m2n4 + n6 − 3m4a2 + 21m2n2a2 − 3n4a2 + 3m2a4 + 3n2a4 − a6 = 0. (1)

Relation (1) can be written as

(m2 + n2 − a2)3 + 27m2n2a2 = 0

which is the equation of an asteroid [9],[15].

Another form of an asteroid is
n2 − (a2/3 −m2/3)3 = 0.

Transforming the equation into an explicit form we get two equations

n1 =
√

(a2/3 −m2/3)3 and n2 = −
√

(a2/3 −m2/3)3.

In the following figures we display the locus as a graph of two functions (Fig. 4) or like an implicit

Figure 4: Asteroid as two functions Figure 5: Asteroid as implicit curve

curve using the command ImplicitCurve in GeoGebra (Fig. 5).

Let us investigate the locus which is given in the following [16]:

Consider a circle l with radius a/4 rolling about the inside of a fixed circle k with radius a. Find the
locus of a point M on l.

Let us define:
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Definition 2 The locus above we call ”A-rolling”.

In the Fig. 6 we can see the locus which is created in the way above.

Figure 6: Locus created by circle rolling inside

The loci defined by Definitions 1 and 2 are closely connected as we can see in the next theorem:

Theorem 3 Both loci — ”A-perpendicular” and ”A-rolling” from Definitions 1 and 2 are equivalent.

We can prove the theorem both classically and by computer support. Computer approach is similar to
that we used above. Let us demonstrate a classical proof which is very important in teaching geometry
and if feasible we prefer it. It is as follows:

Proof.
Realize that when a small circle l with radius a/4 rolls about the inside of a fixed circle k with
radius a that the lengths of both arcs PK and PM of circles k and l are the same. This means
that if |∠KOP | = α then |∠MHP | = 4α, Fig. 6. Further the triangle DMH is isosceles with
∠D = ∠M = 2α. This implies that M lies on AB and by the theorem of Thales applied to a triangle
PMD the relation PM ⊥ AB follows. Similarly we can prove the opposite implication.

3.2 Strophoid
In the following problem we will explore one property of a strophoid [9], [15].

Let ABC be a triangle with the given side AB and the vertex C on a circle k centered at A and radius
|AB|. Find the locus of the orthocenter M of ABC as C moves along k.

First we describe the problem in GeoGebra (Fig. 7). Using the button Trace on (Fig. 8) or the button
Locus (Fig. 9) in GeoGebra we construct the locus of M when C moves along k.
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Figure 7: Exploring the locus of orthocenter M with moving C

Now we will derive the locus equation. For that purpose we choose a rectangular coordinate system
such that A = [0, 0], B = [a, 0], C = [p, q] and M = [m,n], where a 6= 0 (Fig. 7).
Then

M ∈ hAB ⇔ H1 := m− p = 0,

M ∈ hBC ⇔ H2 := (p− a)m+ qn = 0,

C ∈ k ⇔ H3 := p2 + q2 − a2 = 0.

Figure 8: Locus by ”Trace on” button Figure 9: Locus by ”Locus” button

Elimination of p, q in the system H1 = 0, H2 = 0, H3 = 0 in the program Epsilon gives

with(epsilon);
U:=[m-p,(p-a)*m+q*n,pˆ2+qˆ2-aˆ2]:
X:=[m,n,p,q]:
CharSet(U,X);
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the answer

[-a*nˆ2+mˆ2*a-mˆ3-m*nˆ2, m-p, m*p-m*a+q*n],
‘factors removed‘ = {-m+a}]

and we get the only equation
− an2 +m2a−m3 −mn2 = 0 (2)

which is a cubic curve called strophoid [9], [15].
Another form of (2) is

n2(a+m)−m2(a−m) = 0

which can be expressed as the union of two functions

n = ±m ·
√

a−m

a+m
,

(Fig. 10) or like implicitplot (Fig. 11).

Figure 10: Strophoid as two functions Figure 11: Strophoid as implicit curve

4 Loci in 3D
The next example will be similar to the previous one with the only change — we try to construct the
locus in 3D space.

We will solve the following problem:

Let ABC be a triangle with the given side AB and the vertex C on a sphere κ centered at A and
radius |AB|. Find the locus of the orthocenter M of 4ABC when C moves on κ.

For illustration of this example we use 3D window of GeoGebra 5 [7] (Fig. 12). Plane ρ1 through C
is perpendicular to AB, plane ρ2 is perpendicular to BC and plane of 4ABC is the third, where M
is located.

In order to get simple equations we place a coordinate system so that A = [0, 0, 0], B = [a, 0, 0],
C = [p, q, r], M = [m,n, o] and let κ be a sphere centered at A with radius a, a 6= 0 (Fig. 13).
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Figure 12: View in GeoGebra 3D

Translation of geometric statements into the following set of polynomial equations gives:

M ∈ ρ1 ⇔ H1 := m− p = 0,

M ∈ ρ2 ⇔ H2 := pm+ qn+ ro− pa = 0,

M ∈ ABC ⇔ H3 := −arn+ aqo = 0,

C ∈ k ⇔ H4 := p2 + q2 + r2 − a2 = 0.

We get the system of four equations H1 = 0, H2 = 0, H3 = 0 and H4 = 0 in variables p, q, r,m, n, o, a.

Figure 13: Searching for locus equation

To find the locus of M = [m,n, o] we eliminate variables p, q, r in the ideal I = (H1, H2, H3, H4) to
get a relation in m,n, o which depends on a. We enter in CoCoA

Use R::=Q[p,q,r,m,n,o,a];
I:=Ideal(m-p,pm+qn+ro-pa,-arn+aqo,pˆ2+qˆ2+rˆ2-aˆ2);
Elim(p..r,I);

and get
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Ideal(mˆ4a + mˆ2nˆ2a + mˆ2oˆ2a - 2mˆ3aˆ2 + mˆ2aˆ3 - nˆ2aˆ3 - oˆ2aˆ3).

By factoring and rewriting this polynomial as an equation we get

a(−m+ a)(am2 − an2 − ao2 −m3 −mn2 −mo2) = 0. (3)

By elimination extraneous factors can occur in the locus equation. We can see them in (3). The case
a = 0 can be be ruled out as a 6= 0. The factor −m + a can also be ruled out since if m = a then by
assumptions M = B = C and M = [a, 0, 0] is already involved in (4). Hence the locus equation is

am2 − an2 − ao2 −m3 −mn2 −mo2 = 0

or
m(m2 + n2 + o2) + a(−m2 + n2 + o2) = 0. (4)

We see that the locus is an algebraic surface of third degree.

To display the locus of (4) in Maple it is advantageous to express it in a parametric form. Considering
the intersection of a line l := X = [t, ut, vt] through the singular point O = [0, 0, 0] with the surface
(4) we obtain t = a(1− u2 − v2)/(1 + u2 + v2) which implies the following parametric equations of
the surface (4)

Figure 14: 3D version of a strophoid for
a = 1

Figure 15: 3D version of a strophoid with
sphere for a = 1

p =
a(1− u2 − v2)

1 + u2 + v2

q =
au(1− u2 − v2)

1 + u2 + v2
(5)

r =
av(1− u2 − v2)

1 + u2 + v2

for real parameters u, v. Fig. 14 displays a 3D strophoid and Fig. 15 displays 3D strophoid together
with the sphere — in both cases the strophoid is expressed in a parametric form.
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5 Conclusion
The development of computers and mathematical software allows such activities that previously were
not possible. In the examples that were solved above we see how effective computer support actually
is. New technologies show new possibilities for exploring loci not only in plane, but also in space.

Some open questions [13]:

• To what extent should we teach the theory of automated geometry theorem proving (Gröbner
bases computations or Wu–Ritt method, normal forms, theory of elimination etc.)? (from
”black box” to perfect understanding)

• Is it necessary to include automatic theorem proving into mathematics teachers’ curricula?

• Is it necessary to introduce automatic theorem proving (in reduced form) into secondary schools
curricula (15-18 years of age)?
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